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Abstract
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible.
We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best
performed by operating over an intrinsic surface representation. We provide such a representation of a surface,
based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the
mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian
representation, we develop useful editing operations: interactive free-form deformation in a region of interest
based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and
transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is
the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness
of our approach in several examples, showing that the editing operations change the shape while respecting the
structural geometric detail.

1. Introduction
Surfaces in computer graphics are mostly represented in
global coordinate systems: explicit representations are based
on points, vertices, or nodes that are typically described us-
ing absolute Euclidean coordinates. Implicit representations
describe the shape as the level set of a function defined in
Euclidean space. A global coordinate system is the natural
choice for all operations involving other objects, such as ren-
dering, intersection computation, transformations, or CSG
modeling. On the other hand, for local surface modeling, it
would be desirable that the representation captures the local
shape (i.e. the intrinsic geometry of the surface) rather than
the absolute position or orientation in Euclidean space.

Manipulating and modifying a surface while preserving
the geometric details is important for various surface edit-
ing operations, including free-form deformations [SP86]
[Coq90], cut and paste [RIKM93, KK99, BMBZ02], fu-
sion [KSMK99], morphing [Ale03], and others. The abso-
lute position of the mesh vertices is not important for these
tasks, which calls for an intrinsic surface representation.

A partially intrinsic surface mesh representation is
multi-resolution decompositions [FB88, ZSS97, KCVS98]
[KVS99, GSS99, CGC∗02]. In a multi-resolution mesh, the

geometry is encoded as a base mesh and several levels of
refinement. The refinement is typically described locally, so
that the geometric details are mostly captured in a discrete
set of intrinsic coordinates. Using this representation, sev-
eral modeling operations can be performed on an appropriate
user-specified level-of-detail.

Our approach to encoding geometric details is to use dif-
ferential coordinates for the vertices. This provides an in-
trinsic representation of the surface mesh, where the re-
construction of global coordinates always preserves the lo-
cal geometry as much as possible given the modeling con-
straints. Using a differential representation for editing op-
erations has been shown to be quite effective in image do-
main [FLW02, PGB03]. Image domain has a natural regular
parameterization and a resulting inherent definition of a gra-
dient, which allows modeling many editing tasks as a dis-
crete Poisson equation. However, this approach cannot be
directly adapted to discrete (as well as continuous) surfaces.

We rather realize an approach to surface mesh editing
based on encoding each vertex relative to the centroid of
its topological neighbors. The difference of a vertex posi-
tion from the centroid of its neighbors is known as a Lapla-
cian coordinate [Ale03, KG00, SCOT03, LSCO∗04]. Lapla-
cian coordinates are a linear function of the global mesh
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geometry, which allows efficient converting between abso-
lute and intrinsic representations by solving a sparse linear
system. Laplacian coordinates are invariant under translation
(of absolute geometry), but they are not invariant to scaling
and rotation, which poses the main practical problem.

We provide a technique that makes Laplacian coordinates
invariant to rotation and isotropic scaling. Using this tech-
nique, we develop useful surface editing operations, which
preserve the intrinsic geometry of the surface as much as
possible given the constraints of the modeling operations.
The major contributions of this work are:
Rotation and scale invariant (RSI) Laplacian coordi-
nates: We reformulate the process of least squares fitting of
the Euclidean geometry to the given Laplacian coordinates.
In our fitting process, we implicitly compute an appropriate
transformation per vertex, which is applied to the respective
Laplacian coordinate. This leads to Laplacian coordinates
that are almost insensitive to rotation and scaling.
Interactive detail-preserving surface editing: Based on
the RSI Laplacian coordinates, we develop an interactive
editing system. The user deforms a region of the surface by
manipulating a handle. The transformation of the handle in-
duces a global deformation that resembles the outcome of
manipulating an object made of some physical soft material.
Transfer of geometric detail (coating): Since the detail is
captured in the Laplacian coordinates, we are able to “peel”
high-frequency details from one surface and transfer them to
another. The method can be applied to arbitrary homeomor-
phically parameterized surface patches.
Transplanting surface patches with homeomorphic
boundaries: Our transplanting technique only requires that
the surfaces have matching topology at the boundaries; the
surface patches within the boundaries need not match. A
seamless transition with gradual change of detail from one
part to another results from blending the Laplacian repre-
sentations of the parts.

2. Related work
Editing three-dimensional shapes has been an important re-
search area in geometric modeling and computer graph-
ics. The dominating approach for (free-form) designing
of a surface from scratch is based on parametric surfaces
(see e.g., [Far92, HL93]), which can be generalized to non-
regular base domains using subdivision techniques [SZ00].

However, we are interested in editing an existing sur-
face, probably acquired with scanning devices. If the surface
is smooth, modifications should remain smooth [WW94]
[Tau95, Le 03]. If the surface contains geometric details
(e.g. a sharp feature), these details should be preserved.
The editing operation should naturally change the shape
and simultaneously respect the structural detail. The stan-
dard approach to detail-preserving modeling operations uses
a multi-resolution representation of the mesh. The geomet-
ric details are usually expressed relative to a local coordi-
nate frame [FB88, ZSS97, KCVS98, KVS99, GSS99]. The

different levels can be considered as frequencies of the ge-
ometry. The coarsest level refers to the smoothest surface
and adding finer levels introduces smaller details. Editing
operations can be performed on coarse levels, and the so
modified shape is computed by “adding” the displacements
in their local coordinate frames.

The problem of basis elements with large support in multi-
resolution representations has motivated differential repre-
sentations for image editing [PGB03]. Note that the com-
pletely local and intrinsic differential representation comes
at the expense of a global reconstruction computation (e.g.
the solution of a global PDE), while the generation of ab-
solute coordinates from multi-resolution representations is
restricted to the modified bases.

Our motivation is similar to image editing methods based
on PDEs. We propose a local differential representation, at
the expense of a global reconstruction from differential to
absolute geometry. The modified surface is reconstructed by
solving a sparse linear system. Using state-of-the-art solvers
this turns out to be very fast and adequate for interactive sys-
tems, even for editing operations on large meshes.

The potential of differential coordinates for free-form
modeling is briefly discussed by Alexa [Ale03]. He specifi-
cally discusses the difficulty of deriving affine-invariant co-
ordinates for mesh representation as the vertex neighbor-
hood may be degenerated (i.e. planar) and, even more diffi-
cult, near-degenerate situations make the reconstruction nu-
merically intractable.

In a recent work, Yu et al. [YZX∗04] introduce an edit-
ing technique, formulated by manipulation of the gradients
of the coordinate functions (x,y,z) defined on the mesh. The
surface is reconstructed by solving the least-squares system
resulting from discretizing the Poisson equation ∆ f = g with
Dirichlet boundary conditions. Lipman et al. [LSCO∗04] re-
construct the surface from discrete Laplacians of the mesh
functions and spatial boundary conditions by solving a very
similar least-squares system. Both works point out the main
problem of this approach: the need to rotate the local frames
that define the gradients, or the Laplacians, to preserve the
orientation of the local details. They propose to remedy
this problem by explicit assignment of the local rotations.
Lipman et al. [LSCO∗04] estimate the local rotations of
the frames on the underlying smooth surface, and Yu et
al. [YZX∗04] propagate the rotation of the editing handle,
defined by the user, to all the vertices of the region of in-
terest. In contrast to these explicit solutions, in this paper we
introduce a method that implicitly transforms the differential
coordinates based on finding an optimal transform for each
vertex. The transform is defined by a linear expression of
local coordinates and a sparse set of control points. The so-
lution of this linear system strives to preserve the size and the
orientation of the differential coordinates and consequently
of the surface details.

We focus our work on meshes as they are the dominat-
ing representation of surfaces these days. Other surface rep-
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resentations are advantageous for certain modeling opera-
tions. Implicit surfaces allow easy blending, space warp-
ing, and CSG modeling [Roc89, GW95, PASS95, WGG99].
The recently popular level-set approach yields a particu-
larly simple formulation and implementation of these oper-
ations [MBWB02] based on the discrete and regular repre-
sentation of a distance field. Adaptively sampled distance
fields [FPRJ00] provide a discrete surface representation
with controlled error. All of these essentially implicit rep-
resentations allow changing the topology of the surface dur-
ing modeling. Point-sampled surfaces are related to meshes;
however, explicit information about the topology is missing.
This has advantages for some operations [PKKG03], though
sometimes requires surface reconstruction steps to add more
points to the representation.

3. Fitting transformed Laplacian coordinates
Let the mesh M be described by a pair (K,V ), where K de-
scribes the connectivity and V = {v1, . . . ,vn} describes the
geometric positions of the vertices in R

3. We use the follow-
ing terminology: the neighborhood ring of a vertex i is the
set of adjacent vertices Ni = { j|(i, j)∈ K} and the degree di
of this vertex is the number of elements in Ni. We assume
that the mesh is connected.

Instead of using absolute coordinates V , we would like
to describe the mesh geometry using a set of differentials
∆ = {δi}. Specifically, coordinate i will be represented by
the difference between vi and the average of its neighbors:

δi = L (vi). (1)

For simplicity, we define L with uniform weights:

L (vi) = vi −
1
di

∑
j∈Ni

v j. (2)

These weights proved to be sufficient in all our experi-
ments. However, our approach does not depend on the par-
ticular choice of L . For instance, the cotangent weights
(see, e.g. [DMSB99]) would accommodate extremely non-
uniform tessellations, and their application is straightfor-
ward. The transformation between V and ∆ can be described
in matrix algebra. Let A be the mesh adjacency matrix and
D = diag(d1, . . . ,dn) be the degree matrix. Then ∆ = LV ,
where L = I −D−1A for the uniform weights. The matrix
L is commonly considered as the Laplacian operator of the
mesh with connectivity A [Tau95, KG00], which is why we
call δi the Laplacian coordinate of vertex i. Laplacian coor-
dinates are invariant under translation, but sensitive to linear
transforms. L has rank n− 1, which means V can be recov-
ered from ∆ by fixing one vertex and solving a linear system.

The approach to performing modeling operations using
Laplacian coordinates ∆ is to fix the absolute position of sev-
eral vertices (see [Ale03]), i.e.,

v′i = ui, i ∈ {m, . . . ,n}, m < n (3)

and solve for the remaining vertices {v′i}, i ∈ {1, . . . ,m−1}

by fitting the Laplacian coordinates of the geometry V ′ to the
given Laplacians ∆. It has been observed that the solution
behaves better if the constraints {ui} are satisfied in a least
squares sense rather than exactly [SCOT03, LSCO∗04]. This
results in the following error functional:

E(V ′) =
n

∑
i=1

∥

∥δi −L (v′i))
∥

∥

2
+

n

∑
i=m

‖v′i −ui‖
2, (4)

which has to be minimized to find a suitable set of coordi-
nates V ′. Solving this quadratic minimization problem re-
sults in a sparse linear system of equations.

The rationale of fitting given Laplacian coordinates is that
details of the shape are preserved, as the relative location
of vertices is encoded in ∆. As mentioned, however, these
coordinates are sensitive to linear transformations. Thus, the
detail structure of the shape can be translated, but not rotated
or scaled. If the constraints ui imply a linear transform, the
details are not transformed accordingly.

The main idea of our approach is to compute an appropri-
ate transformation Ti for each vertex i based on the eventual
new configuration of vertices V ′. Thus, Ti(V

′) is a function
of V ′ and we formulate the error functional as

E(V ′) =
n

∑
i=1

∥

∥Ti(V
′)δi −L (v′i)

∥

∥

2
+

n

∑
i=m

‖v′i −ui‖
2. (5)

Note that in Eq. 5 both Ti and V ′ are unknown. However, if
the coefficients of Ti are a linear function in V ′, then solving
for V ′ implies finding Ti (though not explicitly) since E(V ′)
is simply a quadratic function in V ′.

The basic idea for defining Ti is to derive it from the trans-
formation of vi and its neighbors into v′i and its neighbors:

min
Ti

(

‖Tivi −v′i‖
2 + ∑

j∈Ni

‖Tiv j −v′j‖
2

)

. (6)

Since this is a quadratic expression, the minimizer is a linear
function of V ′, as required. However, if Ti is unconstrained,
the natural minimizer for E(V ′) is a membrane solution, and
all geometric detail is lost. Thus, Ti needs to be constrained
in a reasonable way. We have found that Ti should include
rotations, isotropic scales, and translations. In particular, we
want to disallow anisotropic scales, as they allow removing
the normal component from Laplacian coordinates.

The translational part of Ti is introduced simply by us-
ing homogeneous coordinates. The linear part should sat-
isfy the following conditions: The transformation should be
a linear function in the target configuration but constrained
to isotropic scales and rotations. The class of matrices rep-
resenting isotropic scales and rotation can be written as
T = s exp(H), where H is a skew-symmetric matrix. In 3D,
skew-symmetric matrices emulate a cross product with a
vector, i.e. Hx = h× x. Drawing upon several other prop-
erties of 3× 3 skew matrices, one can derive the following
representation of the exponential above:

s expH = s(αI +βH + γhT h). (7)
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Inspecting the terms we find that only s, I, and H are linear in
the unknowns s and h, while hT h is quadratic As a linear ap-
proximation of the class of constrained transformations we,
therefore, use

Ti =









s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1









. (8)

This matrix is a good linear approximation for rotations with
small angles. The consequences for larger angles are dis-
cussed later.

Given the matrix Ti as in Eq. 8, we can write down the
linear dependency (cf. Eq. 6) of Ti on V ′, explicitly. Let
(si,hi, ti)

T be the vector of the unknowns in Ti. Then we
wish to minimize

‖Ai(si,hi, ti)
T −bi‖

2, (9)

where Ai contains the positions of vi and its neighbors and
bi contains the position of v′i and its neighbors. The structure
of (si,hi, ti)

T yields

Ai =













vkx
0 vkz

−vky
1 0 0

vky
−vkz

0 vkx
0 1 0

vkz
vky

−vkx
0 0 0 1

...













, k∈{i}∪Ni,

(10)
and

bi =













v′kx

v′ky

v′kz
...













, k ∈ {i}∪Ni. (11)

The linear least-squares problem above is solved by

(si,hi, ti)
T =

(

AT
i Ai

)−1
AT

i bi, (12)

which shows that the coefficients of Ti are linear functions
of bi, since Ai is known from the initial mesh V . The entries
of bi are simply entries of V ′ so that (si,hi, ti) and, thus, Ti
is a linear function in V ′, as required.

3.1. Adjusting Ti
In many modeling situations, solving for absolute coordi-
nates in the way explained above is sufficient. However,
there are two exceptions that require adjusting the transfor-
mations:
1. As mentioned, Ti does not exactly represent the class of

isotropic scales and rotations. For large angles φ around
the axis h/‖h‖ the space is scaled along h/‖h‖ with a
factor of cosφ.

2. Sometimes anisotropic scaling is the wanted free-form
deformation, e.g., the dislocation of a single vertex typi-
cally implies a stretch in only one direction.

Both situations are handled in a similar way: The current set
of transformations {Ti} is computed from V and V ′. Then
each Ti is inspected, the corresponding Laplacian coordinate
δi is updated appropriately depending on the cases above,
and the system is solved again. In the case of too large an-
gles of rotations, it is possible to first apply an approximated
reconstruction using the method in [LSCO∗04] and then re-
fine it with our technique, such that smaller rotations are in-
volved. In the case of wanted anisotropic scaling, the {δi}
are scaled by the inverse of the scale implied by the con-
straints. See Figure 2 for an example of large rotations.

4. Mesh editing
There are many different tools to manipulate an existing
mesh. Perhaps the simplest form consists of manipulating a
handle, which is a set of vertices that can be moved, rotated
and scaled by the user. The manipulation of the handle is
propagated to the shape such that the modification is intuitive
and resembles the outcome of manipulating an object made
of some physical soft material. This can be generalized to a
free-form deformation tool which transforms a set of control
points defining a complex of possibly weighted handles, en-
abling other modeling metaphors to be mimicked (see e.g.,
the recent work of [BK03] and the references therein).

The editing interaction framework we used is similar to
the one described in [LSCO∗04], which is comprised of the
following stages: First, the user defines the region of inter-
est (ROI) for editing. The ROI is defined by the closed sim-
ple loop of its boundary edges. Next, the handle inside the
ROI is defined. In addition, the user can optionally define
the amount of “padding” of the ROI by stationary anchors.
These stationary anchors form a belt that supports the tran-
sition between the ROI and the untouched part of the mesh.
Then, the user manipulates the handle, and the surface is re-
constructed with respect to the relocation of the handle.

The submesh of the ROI is the only part considered during
the editing process. The positions of the handle vertices and
the stationary anchors constrain the reconstruction and hence
the shape of the resulting surface. The handle is the means of
user control, and therefore, its constraints are constantly up-
dated. The unconstrained vertices of the submesh are repeat-
edly reconstructed to follow the user interaction. The station-
ary anchors are responsible for the transition from the ROI
to the fixed part of the mesh, resulting in a soft transition
between them. Selecting the amount of padding by anchor
vertices depends on the user’s requirements, as mentioned
above. We have observed in all our experiments that setting
the radius of the “padding ring” to be up to 10% of the ROI
radius gives satisfying results.

The reconstruction of the submesh requires solving the
linear least-squares system as described in Section 3. Build-
ing the system matrix (Eq. 12), including the computation of
a sparse factorization, is relatively slow, but constructed only
once when the ROI is selected. The user interaction with the
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(a) (b) (c)

Figure 1: The editing process. (a) The user selects the region of interest – the upper lip of the dragon, bounded by the belt of
stationary anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and
rotated. (c) The editing result.

(a) (b) (c)

Figure 2: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the
handle. (b) Translation of the handle. (c) Subsequent handle rotation. Note that the detail is preserved in all the manipulations.

handle requires solely updating the positions of the handle
vertices in the right-hand-side vector, and solving.

Figures 1 and 2 illustrate the editing process. Note that the
details on the surface are preserved, as one would intuitively
expect. Figure 3 demonstrates deformation of a model with
large extruding features which cannot be represented by a
height field. For more examples and details, see [SCOL∗04].

5. Coating transfer
Coating transfer is the process of peeling the coating of a
source surface and transferring it onto a target surface. See
Figure 4 for an example of such an operation. We use the
term coating to refer to the high-frequency surface details.
More precisely, the coating is defined as the difference be-
tween the original surface and a low-frequency band of the
surface. Let S be the source surface from which we would
like to extract the coating, and let S̃ be a smooth version of
S. The surface S̃ is a low-frequency surface associated with
S, which can be generated by filtering (see e.g., [DMSB99]).
The amount of smoothing is a user-defined parameter, de-
pending on the range of detail the user wishes to transfer.

We encode the coating of a surface based on the Lapla-
cian coordinates. Let δi and δ̃i be the Laplacian coordinates

of the vertex i in S and S̃, respectively. We define ξi to be the
encoding of the coating at vertex i defined by ξi = δi − δ̃i .
The values of ξ j encode the coating of S, since given the
bare surface S̃ we can recover the original coating simply by
adding ξ j to δ̃i and reconstructing S with the inverse Lapla-

cian transform L−1. That is, S = L−1(δ̃+ξ) .

In this case of a coating transfer of S onto itself, S is faith-
fully reconstructed. However, in general, instead of coating
S̃ with ξ, we would like to add the coating ξ onto an arbi-
trary surface U . If the target surface U is not smooth, it can
be smoothed first, and then the coating transfer applied. Be-
fore we move on, we should note that the coating transfer
from S onto S̃ is simple, since the neighborhoods of the cor-
responding vertices i have the same orientation. We define
the orientation of a vertex i in a surface S by the local frame
of i on S̃. Loosely speaking, the orientation of a point reflects
the general orientation of its neighborhood, without respect-
ing the high frequencies of the surface.

When applying a coating transfer between two surfaces,
the coating ξ should first be aligned, or rotated with respect
to the target. This compensates for the different local sur-
face orientations of corresponding points in the source and
target surfaces. The following is an important property of
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(a) (b) (c)

Figure 3: Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes the global
shape while respecting the structural detail as much as possible.

(a) (b) (c)

Figure 4: Coating transfer; The coating of the Bunny (a) is
transferred onto the mammal’s leg (b) to yield (c).

the Laplacian coordinates: R ·L−1(δ j) = L−1(R ·δ j) , where
L−1 is the transformation from Laplacian coordinates to ab-
solute coordinates, and R a global rotation applied to the en-
tire mesh. The mapping between corresponding points in S
and U defines different local orientations across the surfaces.
Thus, our key idea is to use the above property of the Lapla-
cian coordinates locally, assuming that, locally, the rotations
are close to each other (in induced norm).

5.1. Coating
Assume that the source surface S and the target surface U
share the same connectivity, but have different geometries,
and that the correspondence between their vertices is given.
In the following we generalize this to arbitrary surfaces.

The local rotation Ri at each vertex i in S and U is taken
to be the local rotation between their corresponding frames
(see Figure 6). The frame of vertex i in S is defined by its
normal ns and the normalized projection of some edge es
emanating from i onto the tangent plane defined by ns (the
third vector is determined by the right-hand product of the
first two). The corresponding frame in U is established by
nu (the normal of i in U) and the projection of the edge eu
which corresponds to es. Denote the rotated coating encod-
ing of vertex i by ξ′i = Ri(ξi). Having all the Ri associated
with the ξi, the coating transfer from S onto U is expressed
as follows: U ′ = L−1(∆+ξ′), where ∆ denotes the Laplacian

(a) (b) (c) (d)

Figure 5: The coating of the Max Planck is transferred onto
the Mannequin. Different levels of smoothing were applied
to the Max Planck model to peel the coating, yielding the
results in (c) and (d).

coordinates of the vertices of U . Now the new surface U ′ has
the coating of U .

5.2. Mapping and resampling
So far we have assumed that the source and target meshes
(S and U) share the same connectivity, and hence the cor-
respondence is readily given. However, the coating transfer
between arbitrary surfaces is more involved. To sample the
Laplacian coordinates, we need to define a mapping between
the two surfaces.

This mapping is established by parameterizing the meshes
over a common domain. Both patches are assumed to be
homeomorphic to a disk, so we may choose either the unit
circle or the unit square as a common domain. We apply the
mean-value coordinate parameterization [Flo03], as it effi-
ciently produces a quasi-conformal mapping, which is guar-
anteed to be valid for convex domains. We fix the boundary
conditions for the parameterization such that a correspon-
dence between the source and target surfaces is achieved, i.e.
we identify corresponding boundary vertices and fix them at
the same domain points. In practice, this is a single vertex in
S and in U that constrains rotation for the unit circle domain,
or four boundary vertices for the unit square domain.

Some applications require a more careful correspondence
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(a) (b) (c) (d)

Figure 6: Coating transfer. The orientation of a coating detail (a) is defined by the local frame at the corresponding vertex in the
low frequency surface in (b). The transferred coating vector needs to be rotated to match the orientation of the corresponding
point in (c) to reconstruct (d).

than what can be achieved from choosing boundary condi-
tions. For example, the mapping between two faces (see Fig-
ure 5) should link relevant details like facial features (e.g.,
the brow wrinkles of the Max Planck). In this case the user
provides a few additional (inner) point-to-point constraints
which define a warp of the mean-value parameterization. In
our implementation we used a radial basis function elastic
warp; see e.g., [Lév01, PSS01, KSG03] for advanced con-
strained mapping techniques.

In general, a vertex i ∈ U is mapped to some arbitrary
point inside a triangle τ ∈ S. We experimented with several
methods of sampling the Laplacian for a vertex. The best re-
sults are obtained by first mapping the 1-ring of i onto S us-
ing the parameterization, and then computing the Laplacian
from this mapped 1-ring. Note that this approach assumes a
locally similar distortion in the mapping. This is usually the
case for the coating transfer; we used the 1-ring sampling in
all the respective examples. We obtain similar results by lin-
ear interpolation of the three Laplacian coordinates sampled
at the vertices of the triangle τ. While this approach leads
to some “blurring” compared to the first one, it is even sim-
pler and does not suffer from extremely different parametric
distortion. In addition, no special treatment is required at the
boundary of the domain when it is chosen to be a disk.

To enable faithful resampling of the Laplacian coordi-
nates, the tessellations of the surfaces U and S need to be
"compatible", i.e. each mesh must be locally fine enough to
accommodate the detail of the other mesh. This is achieved
by a local, isotropic remeshing (see e.g., [AdVDI03, SG03]
[VRS03]) of the sampled regions of U and S.

After the mapping between U and S has been established
and the Laplacians have been sampled, the coating transfer
proceeds as explained before. Note that now the correspond-
ing ξi is the difference between the sampled Laplacian coor-
dinates in S and S̃. See the examples in Figures 4, 5 and 7.

5.3. Mixing details
Given two meshes with different detail, a variant of the
above transfer mechanism can be applied on a third target
mesh from the two sources. Each vertex in the transitional

(a) (b) (c)

Figure 7: Transferring the coating of the Mannequin onto
the face of the Bunny. (a) The source surface S. It is sig-
nificantly smoothed to peel the coating. (b) The smoothed
surface S̃. (c) The result of coating transfer onto the Bunny.

region of the target mesh receives the linear interpolation
of the corresponding Laplacian coordinates of the source
meshes. Figure 8 illustrates the effect of mixing the details.
This example emphasizes the gradual transition of geomet-
ric structure, as the details of the two source meshes differ
in smoothness, form and orientation. Note that the global
shape of the target mesh is deformed respectively. By adding
anchor points over the target, its shape can be further de-
formed. Figure 9 shows the application of this mechanism to
transplant the Armadillo’s back onto the Bunny’s back with
a soft transition. In the next section we further discuss this
transplanting operation.

6. Transplanting surface patches
In the previous sections we showed how the Laplacian coor-
dinates allow us to transfer the details of a surface onto an-
other and how to gradually mix the details of two surfaces.
These techniques are refined to allow a seamless transplant-
ing of one shape onto another. The transplanting operation
consists of two apparently independent classes of operations:
topological and geometric. The topological operation creates
one consistent triangulation from the connectivities of the
two submeshes. The geometric operation creates a gradual
change of the geometric structure of one shape into another.
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(a) (b) (c)

Figure 8: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly blended
in the middle to yield the shape in (c).

(a) (b)

Figure 9: Transplanting the Armadillo’s coating onto the
Bunny’s back with a soft transition (a) and a sharp transition
(b) between the two types of details. The size of the transition
area in which the Laplacians are blended is large in (a) and
small in (b).

The latter operation is based on the Laplacian coordinates
and the reconstruction mechanism.

Let S denote the mesh that is transplanted onto a surface
U . See Figure 10, where the right wing (S) of the Feline
is transplanted onto the Bunny (U). The transplanting re-
quires the registration of the two parts in world coordinates.
This defines the desired location and orientation of the trans-
planted shape, as well as its scale. If required, the meshes
are locally remeshed in order to make the scale of the Lapla-
cian coordinates compatible (cf. Section 5.2). The user se-
lects a region U◦ of U onto which S will be transplanted.
Hence the boundary of U◦ is assumed to be homeomorphic
to the boundary of S. After cutting U◦ off U , the two bound-
ary loops are trivially zipped. This creates the connectivity
of the target mesh D (Figure 10(a)).

The remaining transplanting algorithm is similar to details
mixing. The transitional regions for resampling, S′ on S and
U ′ on U◦, are selected, e.g., by offsetting from the respective
cut seams. Since D includes a zipped “copy” of S, its transi-
tional region D′ is implicitly defined by S′ along with a trivial
mapping between vertices of the two regions. For sampling,
we require a correspondence between the patches S′ and U ′.
We parameterize both meshes over a common domain, e.g.,
the unit square. If the patches have to be cut to match the
topology of the domain, the cuts are used to align the map-

pings for correspondence between the patches. In our ex-
periments no further warping was necessary to improve the
correspondence (cf. Section 5.2).

Once the transitional regions and the mappings are de-
fined, the transplanting procedure is ready to sample the
Laplacian coordinates over the target region D′. In order
to mix details, the corresponding samples from S′ and U ′

are linearly interpolated with weights defined by their rela-
tive position in the unit square parameter domain. More pre-
cisely, if v ∈ [0,1] defines the coordinate along the “height”
axis (the blue and red lines in Figure 10(b), then the weights
are (1− v) and v, respectively. Since the length distortion
of the maps may significantly differ, we linearly interpolate
the Laplacian coordinates for sampling (cf. Section 5.2). The
transition region is padded with some additional free vertices
and a belt of anchors (similar to the editing ROI). These
vertices are supposed to stay in place as much as possible,
and their Laplacian coordinates are sampled from D. The
remaining vertices are fixed and hence not required for the
reconstruction. Figures 10(c)-(d), 11 show the results.

7. Implementation details
All the techniques presented in this paper are implemented
and tested on a 2.0 GHz Pentium 4 computer. The main
computational core of the surface reconstruction algorithm
is solving a sparse linear least-squares problem. We use a
direct solver [Tol03] which first computes a sparse trian-
gular factorization of the normal equations (employing fill-
reducing reordering) and then finds the minimizer by back-
substitution. The system is well-conditioned thanks to the
anchors. As mentioned in Section 4, constructing the ma-
trix of the least-squares system and factorizing it takes the
bulk of the computation time. This might seem a heavy op-
eration for such an application as interactive mesh editing;
however, it is done only once per ROI selection. Solving by
back-substitution is quite fast and enables us to reconstruct
the surface interactively, following the user’s manipulations
of the handle. It should be noted that the system is comprised
of only the vertices that fall into the ROI; thus the complexity
is not directly dependent on the size of the entire mesh, but
rather on the size of the ROI. We experimented with various
ROIs of sizes in the order of tens of thousands of vertices.
The “intermediate preprocess” times observed were a few
seconds, while the actual editing process runs at interactive

c© The Eurographics Association 2004.

182



Sorkine et al. / Laplacian Surface Editing

(a) (b) (c) (d)

Figure 10: Transplanting of Feline’s wings onto the Bunny (see also the color section). (a) After cutting the parts and fixing the
desired pose, the zipping (in green) defines the target connectivity D. The transitional region D′ is marked red. (b) D′ is sampled
over the respective regions U ′ ⊂ U◦ (U◦ is the cut part of the Bunny’s back) and S′ (the bottom of the wing). The texture with
uv-isolines visualizes the mapping over the unit square. The cut (in yellow) aligns the two maps. (c) The result of reconstruction.
The reconstructed submesh is padded by a belt of anchors (red dots). Note the change of the zipping seam triangles (in green)
and the gradual change and preservation details within the transition region (red). (d) The flying Bunny.

Figure 11: Transplanting part of the Feline onto the Dragon.

frame rates. For example, the construction of the system ma-
trix for a ROI on the arm of the Octopus (about 10K vertices)
took 1.5 seconds and the factorization 1.9 seconds. The solve
(when moving the handle) took 0.07 seconds.

8. Conclusions
We have developed an intrinsic geometry representation for
meshes that fosters several local surface editing operations.
Geometry is essentially encoded using differential properties
of the surface, so that the local shape (or, surface detail) is
preserved as much as possible given the constraints posed
by the user. We show how to use this representation for in-
teractive free-form deformations, detail transfer or mixing,
and transplanting partial surface meshes.

It is interesting to compare the Laplacian-based approach
to multi-resolution approaches: since each vertex is repre-
sented individually as a Laplacian coordinate, the user can
freely choose the editing region and model arbitrary bound-

ary constraints, however, computing absolute coordinates re-
quires the solution of a linear system. On the other hand, the
non-local bases in multi-resolution representations limit the
choice of the editing region and the boundary constraints,
but absolute coordinates are computed simpler, by summing
displacements through the hierarchy.

Global modeling operations naturally require global sur-
face representations. We would like to adapt our approach to
implicit shapes, possibly to the level-set framework. When
working with meshes, explicit handling of connectivity is
required. In [BMBZ02], this problem is dealt with by us-
ing regular remeshing. Here, we tried to preserve the orig-
inal connectivities as much as possible, modifying only the
transition area.

In general, modeling geometry should be coupled to mod-
eling other surface properties, such as textures. The machin-
ery of discrete Poisson equations has already shown to be
effective for image editing, so that editing textured surfaces
should possibly be performed on a combined differential ge-
ometry/texture representation.
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